ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Тамаркин Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 109595

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Таблицы и турниры (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9,10

В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

Прислать комментарий     Решение

Задача 109560

Темы:   [ Раскраски ]
[ Правильные многоугольники ]
[ Задачи с ограничениями ]
Сложность: 4+
Классы: 8,9,10,11

В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий. Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Прислать комментарий     Решение

Задача 109520

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Назовем усреднением последовательности ak действительных чисел последовательность a'k с общим членом a'k= . Рассмотрим последовательности: ak , a'k – ее усреднение, a''k – усреднение последовательности a'k , и т.д. Если все эти последовательности состоят из целых чисел, то будем говорить, что последовательность ak – хорошая. Докажите, что если последовательность xk – хорошая, то последовательность xk2 – тоже хорошая.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .