ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Тен О.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 109915

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Тен О.

Даны натуральные числа m и n. Докажите, что число  2n – 1  делится на число  (2m – 1)2  тогда и только тогда, когда число n делится на число  m(2m – 1).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .