ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фомин А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 55755

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Углы между биссектрисами ]
Сложность: 4
Классы: 8,9

На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E — вершина, противоположная B, равен .  Докажите, что NE — биссектриса угла KNC.

Прислать комментарий     Решение

Задача 109917

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9,10

Автор: Фомин А.

Дан набор, состоящий из 100 различных чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор. Докажите, что произведение чисел в наборе положительно.
Прислать комментарий     Решение


Задача 109925

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин А.

Дан набор, состоящий из 1997 чисел таких, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор. Докажите, что произведение чисел в наборе равно 0.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .