ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Волченков С.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 109699

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
Сложность: 3
Классы: 7,8,9

В числе A цифры идут в возрастающем порядке (слева направо). Чему равна сумма цифр числа 9· A ?
Прислать комментарий     Решение


Задача 111770

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10

В 25 коробках лежат шарики нескольких цветов. Известно, что при любом k  (1 ≤ k ≤ 25)  в любых k коробках лежат шарики ровно  k + 1  различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.

Прислать комментарий     Решение

Задача 65073

Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

Прислать комментарий     Решение

Задача 65076

Темы:   [ Средние величины ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

Прислать комментарий     Решение

Задача 65096

Темы:   [ Десятичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .