ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шестаков С.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 105079

Темы:   [ Разбиения на пары и группы; биекции ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

Прислать комментарий     Решение

Задача 108118

Темы:   [ Неравенства с площадями ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия треугольника ]
[ Отношение площадей подобных треугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

Прислать комментарий     Решение

Задача 108118

Темы:   [ Неравенства с площадями ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средняя линия треугольника ]
[ Отношение площадей подобных треугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки E и F являются серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .