ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кукушкин Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 108229

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём  AO = CO.  Обязательно ли треугольник ABC равнобедренный, если   а)  AM = CN;   б)  BM = BN?

Прислать комментарий     Решение

Задача 79328

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .