ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Егоров А.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 7]      



Задача 107781

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4-
Классы: 8,9,10

Точки I‍a, I‍b и I‍c – центры вневписанных окружностей, касающихся сторон соответственно BC, AC и AB треугольника ABC, I — центр вписанной окружности этого треугольника. Докажите, что описанная окружность треугольника ABC проходит через середины сторон треугольника I‍aI‍bI‍c и середины отрезков II‍a, II‍b и II‍c.

Прислать комментарий     Решение

Задача 73789

Темы:   [ Квадратные корни (прочее) ]
[ Теоремы Тейлора и приближения функций ]
[ Иррациональные неравенства ]
[ Десятичная система счисления ]
Сложность: 5
Классы: 9,10,11

Вычислите квадратный корень из числа 0,111...111 (100 единиц) с точностью до а) 100; б) 101; в)* 200 знаков после запятой.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .