ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Дольников В.Л.

Владимир Леонидович Дольников - профессор Ярославского государственного университета им. П.Г. Демидова, доктор физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 110102

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4+
Классы: 7,8,9,10

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.
Прислать комментарий     Решение


Задача 116762

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10

В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.

Прислать комментарий     Решение

Задача 109671

Темы:   [ Объединение, пересечение и разность множеств ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4+
Классы: 8,9,10,11

Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из 2k элементов ( k – фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из (k+1)2 элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.
Прислать комментарий     Решение


Задача 110004

Темы:   [ Системы точек ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4+
Классы: 10,11

В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре не лежат в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы n-3 точки в пространстве ни взять, найдется плоскость из проведенных, не содержащая ни одной из этих n-3 точек.
Прислать комментарий     Решение


Задача 109880

Темы:   [ Длины сторон (неравенства) ]
[ Теорема косинусов ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса с центрами в вершинах покрывают весь треугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .