ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



Задача 109641

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Разбиения на пары и группы; биекции ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9,10,11

Рассматриваются всевозможные квадратные трёхчлены вида  x² + px + q,  где p, q – целые,  1 ≤ p ≤ 1997,  1 ≤ q ≤ 1997.
Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?

Прислать комментарий     Решение

Задача 65206

Темы:   [ Вписанные многогранники ]
[ Описанные многогранники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Все грани шестигранника – четырёхугольники, а в каждой его вершине сходятся по три ребра. Верно ли, что если для него существуют вписанная и описанная сферы, центры которых совпадают, то этот шестигранник – куб?

Прислать комментарий     Решение

Задача 65467

Темы:   [ Принцип крайнего (прочее) ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9

У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?

Прислать комментарий     Решение

Задача 65681

Темы:   [ Куб ]
[ Примеры и контрпримеры. Конструкции ]
[ Сфера, вписанная в трехгранный угол ]
[ Проектирование помогает решить задачу ]
[ Малые шевеления ]
Сложность: 4+
Классы: 9,10,11

В куб с ребром 1 поместили 8 непересекающихся шаров (возможно, разного размера). Может ли сумма диаметров этих шаров быть больше 4?

Прислать комментарий     Решение

Задача 108243

Темы:   [ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что  CD = CB1.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .