ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 66099

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

Прислать комментарий     Решение

Задача 66513

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
Прислать комментарий     Решение


Задача 103829

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7

Расставьте на шахматной доске 32 коня так, чтобы каждый из них бил ровно двух других.

Прислать комментарий     Решение

Задача 66520

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны.

Прислать комментарий     Решение


Задача 65060

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

У реки живет племя Мумбо-Юмбо. Однажды со срочным известием в соседнее племя одновременно отправились молодой воин Мумбо и мудрый шаман Юмбо. Мумбо побежал со скоростью 11 км/ч к ближайшему хранилищу плотов и затем поплыл на плоту в соседнее племя. А Юмбо, не торопясь, со скоростью 6 км/ч, пошел к другому хранилищу плотов и поплыл в соседнее племя оттуда. В итоге Юмбо приплыл раньше чем Мумбо. Река прямолинейна, плоты плывут со скоростью течения. Эта скорость всюду одинакова и выражается целым числом км/ч, не меньшим 6. Каково наибольшее возможное её значение?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .