ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Замятин В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 64511

Темы:   [ Десятичная система счисления ]
[ Раскладки и разбиения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Замятин В.

Володя хочет сделать набор кубиков одного размера и написать на каждой грани каждого кубика по одной цифре так, чтобы можно было из этих кубиков выложить любое 30-значное число. Какого наименьшего количества кубиков ему для этого хватит? (Цифры 6 и 9 при переворачивании не превращаются друг в друга.)

Прислать комментарий     Решение

Задача 110034

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Замятин В.

При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .