ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Горский Е.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 65575

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 66171

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На доске написаны в порядке возрастания два натуральных числа x и y  (x ≠ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он снова проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулем. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Задача 66176

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Геометрические интерпретации в алгебре ]
[ Объем помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

На доске написаны три натуральных числа. Петя записывает на бумажке произведение каких-нибудь двух из этих чисел, а на доске уменьшает третье число на 1. С новыми тремя числами на доске он снова проделывает ту же операцию, и так далее, до тех пор, пока одно из чисел на доске не станет нулем. Чему будет в этот в этот момент равна сумма чисел на Петиной бумажке?

Прислать комментарий     Решение

Задача 86113

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 9,10,11

На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .