ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Эвнин А.Ю.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 65392

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Эвнин А.Ю.

Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?

Прислать комментарий     Решение

Задача 116819

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 8,9

Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

Прислать комментарий     Решение

Задача 65859

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей
  a) больше суммы чисел, выбранных Юрой?
  б) больше суммы любых других пяти чисел исходной таблицы, удовлетворяющих условию: никакие два из них не стоят в одной строке или в одном столбце?

Прислать комментарий     Решение

Задача 105208

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 7,8,9

Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной ее копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычеркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычеркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?

Прислать комментарий     Решение

Задача 107866

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Деление с остатком ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 8,9,10

Решите в натуральных числах уравнение  3x + 4y = 5z.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .