ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Нилов Ф.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 64339

Темы:   [ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 10,11

Автор: Нилов Ф.

Внутри угла AOD проведены лучи OB и OC, причём  ∠AOB = ∠COD.  В углы AOB и COD вписаны непересекающиеся окружности. Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.

Прислать комментарий     Решение

Задача 64390

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

Прислать комментарий     Решение

Задача 64394

Темы:   [ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

Прислать комментарий     Решение

Задача 65004

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

Прислать комментарий     Решение

Задача 65648

Темы:   [ Правильные многоугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема Паскаля ]
Сложность: 3+
Классы: 9,10,11

Автор: Нилов Ф.

Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .