ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Хачатурян М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 64643

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9

Мама испекла одинаковые с виду пирожки: 7 с капустой, 7 с мясом и один с вишней, и выложила их по кругу на круглое блюдо именно в таком порядке. Потом поставила блюдо в микроволновку подогреть. Оля знает, как лежали пирожки, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Оле наверняка добиться этого, надкусив не больше трёх невкусных пирожков?

Прислать комментарий     Решение

Задача 65972

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разрезания (прочее) ]
Сложность: 3+
Классы: 6,7

Фермер огородил снаружи участок земли и разделил его на треугольники со стороной 50 м. В некоторых треугольниках он высадил капусту, а в некоторые пустил пастись коз. Помогите фермеру построить по линиям сетки дополнительные заборы как можно меньшей общей длины, чтобы защитить всю капусту от коз.

Прислать комментарий     Решение

Задача 116265

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Процессы и операции ]
[ Итерации ]
Сложность: 3+
Классы: 8,9,10,11

Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?

Прислать комментарий     Решение

Задача 66385

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9

Робин Гуд взял в плен семерых богачей и потребовал выкуп. Слуга каждого богача принёс кошелёк с золотом, и все они выстроились в очередь перед шатром, чтобы отдать выкуп. Каждый заходящий в шатер слуга кладёт принесённый им кошелёк на стол в центре шатра и, если такого или большего по тяжести кошелька ранее никто не приносил, богача отпускают вместе со слугой. Иначе слуге велят принести ещё один кошелёк, который был бы тяжелее всех, лежащих в этот момент на столе. Сходив за очередным кошельком, слуга становится в конец очереди. Походы за кошельками занимают у всех одинаковое время, поэтому очерёдность захода в шатёр не сбивается.

Когда Робин Гуд отпустил всех пленников, у него на столе оказалось: а) 28; б) 27 кошельков. Каким по счёту стоял в исходной очереди слуга богача, которого отпустили последним?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .