ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фельдман Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 116042

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 8,9

На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.

Прислать комментарий     Решение

Задача 116408

Темы:   [ Связь величины угла с длиной дуги и хорды ]
[ Построения одним циркулем ]
Сложность: 3
Классы: 8,9

Нарисован угол, и еще имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

Прислать комментарий     Решение

Задача 116277

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC; AA1, BB1 – его высоты. Из точки A1 опустили перпендикуляры на прямые AC и AB, а из точки B1 опустили перпендикуляры на прямые BC и BA. Докажите, что основания перпендикуляров образуют равнобокую трапецию.

Прислать комментарий     Решение

Задача 64922

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Теоремы Чевы и Менелая ]
[ Общая касательная к двум окружностям ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 10,11

В треугольнике ABC на стороне AB отметили точку D. Пусть ω1 и Ω1, ω2 и Ω2 – соответственно вписанные и вневписанные (касающиеся AB во внутренней точке) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω1 и ω2, Ω1 и Ω2 пересекаются на прямой AB.

Прислать комментарий     Решение

Задача 64988

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ Радикальная ось ]
Сложность: 4+
Классы: 10,11

В остроугольном треугольнике ABC  O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что окружности, описанные около треугольников AA1A', BB1B', CC1C', имеют общую точку.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .