ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Звонкин Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 64724

Темы:   [ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Звонкин Д.

В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше
  а) 15;
  б) 20?
  в) Может ли в аналогичной задаче про квадрат n×n клеток получиться больше чем n2/4 частей (для  n > 8)?

Прислать комментарий     Решение

Задача 98194

Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Взвешивания ]
Сложность: 4-
Классы: 8,9,10

Автор: Звонкин Д.

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:
  а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;
  б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.

 
Прислать комментарий     Решение

Задача 64592

Темы:   [ Выпуклые многоугольники ]
[ Площадь и ортогональная проекция ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 10,11

Автор: Звонкин Д.

На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны, и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину  (P, Q).  Докажите, что  (P, Q) = (Q, P).

Прислать комментарий     Решение

Задача 64664

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4+
Классы: 10,11

Автор: Звонкин Д.

Многочлен P(x) удовлетворяет условиям:  P(0) = 1,  (P(x))2 = 1 + x + x100Q(x),  где Q(x) – некий многочлен.
Докажите, что коэффициент при x99 в многочлене  (P(x) + 1)100  равен нулю.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .