ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Акопян Э.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 64689

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 6,7

Автор: Акопян Э.

Используя три различных знака арифметических действий и знак равенства, получите верное равенство из записи сегодняшней даты: 16032014.

Прислать комментарий     Решение

Задача 64691

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

Петя утверждает, что он сумел согнуть бумажный равносторонний треугольник так, что получился четырёхугольник, причем всюду трёхслойный.
Как это могло получиться?

Прислать комментарий     Решение

Задача 64692

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

Автор: Акопян Э.

В начале года в 7 классе учились 25 человек. После того как туда пришли семеро новеньких, процентный состав отличников увеличился на 10 (если в начале года он был a%, то теперь –  (a + 10)%).  Сколько теперь отличников в классе?

Прислать комментарий     Решение

Задача 65634

Темы:   [ Обыкновенные дроби ]
[ Арифметическая прогрессия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Мальвина записала по порядку 2016 обыкновенных правильных дробей: 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, ... (в том числе, и сократимые). Дроби, значение которых меньше чем 1/2, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих?

Прислать комментарий     Решение

Задача 65637

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 6,7,8

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .