ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 56523

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?

Прислать комментарий     Решение

Задача 56524

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.

Прислать комментарий     Решение

Задача 56525

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.

Прислать комментарий     Решение

Задача 56526

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Докажите, что треугольники ABC и A1B1C1 равны.

Прислать комментарий     Решение

Задача 56528

Темы:   [ Подобные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .