ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 57409  (#10.001)

Тема:   [ Неравенства с медианами ]
Сложность: 2+
Классы: 8,9

Докажите, что если a > b, то ma < mb.
Прислать комментарий     Решение


Задача 57410  (#10.002)

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8,9

Медианы AA1 и BB1 треугольника ABC пересекаются в точке M. Докажите, что если четырехугольник A1MB1C описанный, то AC = BC.
Прислать комментарий     Решение


Задача 57411  (#10.003)

Тема:   [ Неравенства с медианами ]
Сложность: 3
Классы: 8,9

Периметры треугольников ABM, BCM и ACM, где M — точка пересечения медиан треугольника ABC, равны. Докажите, что треугольник ABC правильный.
Прислать комментарий     Решение


Задача 57412  (#10.004)

Тема:   [ Неравенства с медианами ]
Сложность: 4
Классы: 8,9

а) Докажите, что если a, b, c — длины сторон произвольного треугольника, то  a2 + b2 $ \geq$ c2/2.
б) Докажите, что  ma2 + mb2 $ \geq$ 9c2/8.
Прислать комментарий     Решение


Задача 57413  (#10.005)

Тема:   [ Неравенства с медианами ]
Сложность: 5
Классы: 8,9

а) Докажите, что  ma2 + mb2 + mc2 $ \leq$ 27R2/4.
б) Докажите, что  ma + mb + mc $ \leq$ 9R/2.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .