ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 57924  (#18.006)

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

На плоскости даны три (одинаково ориентированных) квадрата: ABCD, AB1C1D1 и  A2B2CD2; первый квадрат имеет с двумя другими общие вершины A и C. Докажите, что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.
Прислать комментарий     Решение


Задача 57925  (#18.007)

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC. На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ. Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.
Прислать комментарий     Решение


Задача 57926  (#18.008)

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 5
Классы: 8,9,10

Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.
Прислать комментарий     Решение


Задача 57927  (#18.009.1)

Тема:   [ Повороты на 60° и 120° ]
Сложность: 3
Классы: 9

На сторонах треугольника ABC внешним образом построены правильные треугольники A1BC, AB1C и ABC1. Докажите, что AA1 = BB1 = CC1.
Прислать комментарий     Решение


Задача 57928  (#18.009)

Тема:   [ Повороты на 60° и 120° ]
Сложность: 3
Классы: 9

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .