ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 58046  (#20.001)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 3
Классы: 8,9

Докажите, что если длины всех сторон треугольника меньше 1, то его площадь меньше $ \sqrt{3}$/4.
Прислать комментарий     Решение


Задача 52479  (#20.002)

Темы:   [ Диаметр, основные свойства ]
[ Наименьший или наибольший угол ]
[ Неравенства с углами ]
[ Принцип Дирихле (углы и длины) ]
[ Общие четырехугольники ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Прислать комментарий     Решение


Задача 58048  (#20.003)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 3
Классы: 8,9

В некоторой стране 100 аэродромов, причем все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром. Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.
Прислать комментарий     Решение


Задача 58049  (#20.004)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 3+
Классы: 8,9

Внутри круга радиуса 1 лежат восемь точек. Докажите, что расстояние между некоторыми двумя из них меньше 1.
Прислать комментарий     Решение


Задача 58050  (#20.005)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 4
Классы: 8,9

Шесть кругов расположены на плоскости так, что некоторая точка O лежит внутри каждого из них. Докажите, что один из этих кругов содержит центр некоторого другого.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .