ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 209]      



Задача 60648  (#04.022)

 [Код, исправляющий ошибку]
Темы:   [ Криптография ]
[ Четность и нечетность ]
Сложность: 3
Классы: 9,10,11

Предположим, что требуется передать сообщение, состоящее из n² нулей и единиц. Запишем его в виде квадратной таблици n×n. Допишем к каждой строке сумму её элементов по модулю 2. Получится еще один столбец высоты n. Аналогично поступим с каждым столбцом (в том числе найдём и сумму элементов дописанного столбца). Например, если требуется передать сообщение 0111, то таблица 2×2 (рис. слева) окажется дополненной до таблицы 3×3 (рис. справа).

  а) Докажите, что если при передаче расширенной таблицы  (n+1)×(n+1)  произойдёт одна ошибка, то эту ошибку можно будет найти и исправить.
  б) Какое наименьшее число ошибок должно произойти, чтобы об этом нельзя было узнать?

Прислать комментарий     Решение

Задача 30378  (#04.023)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

Прислать комментарий     Решение

Задача 60650  (#04.024)

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

Прислать комментарий     Решение

Задача 60651  (#04.025)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Докажите, что число 11...1 (1986 единиц) имеет по крайней мере
  а) 8;  б) 32 различных делителя.

Прислать комментарий     Решение

Задача 60652  (#04.026)

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .