ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 209]      



Задача 60668  (#04.042)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

Прислать комментарий     Решение

Задача 60669  (#04.043)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 9,10,11

Докажите утверждение обратное тому, что было в задаче 60668:
     если    делится на n при всех  1 ≤ k ≤ n – 1,  то n – простое число.

Прислать комментарий     Решение

Задача 60670  (#04.044)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10,11

а) Докажите, что если p — простое число и  2 ≤ k ≤ p – 2,  то    делится на p.

б) Верно ли обратное утверждение?

Прислать комментарий     Решение

Задача 60671  (#04.045)

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если p – простое число, то   (a + b)pap – bp   делится на  p при любых целых a и b.

Прислать комментарий     Решение

Задача 60672  (#04.046)

Темы:   [ Инварианты ]
[ Делимость чисел. Общие свойства ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49 камней, а в третьей – 5 камней. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .