ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]      



Задача 65224

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10

В треугольнике ABC высота AH проходит через середину медианы BM.
Докажите, что в треугольнике BMC также одна из высот проходит через середину одной из медиан.

Прислать комментарий     Решение

Задача 65641

Темы:   [ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?

Прислать комментарий     Решение

Задача 66402

Темы:   [ Параллелограммы: частные случаи (прочее) ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

Прислать комментарий     Решение

Задача 66403

Темы:   [ Биссектриса угла ]
[ Вневписанные окружности ]
[ Средняя линия трапеции ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.
Прислать комментарий     Решение


Задача 66408

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Мухин Д.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .