ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 77980  (#01)

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

Прислать комментарий     Решение

Задача 107751  (#02)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Свойства симметрии и центра симметрии ]
[ Обратный ход ]
Сложность: 4-
Классы: 7,8,9

Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Прислать комментарий     Решение


Задача 32947  (#03)

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Замощения костями домино и плитками ]
[ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8

Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

Прислать комментарий     Решение

Задача 30285  (#04)

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3
Классы: 6,7

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Прислать комментарий     Решение

Задача 32949  (#05)

 [Индекс пересечения]
Темы:   [ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .