ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 79254  (#М221)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Круг, сектор, сегмент и проч. ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Блох А.

На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?
Прислать комментарий     Решение


Задача 79248  (#М222)

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Наглядная геометрия в пространстве ]
Сложность: 3+
Классы: 9,10,11

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Прислать комментарий     Решение


Задача 73758  (#М223)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

Прислать комментарий     Решение

Задача 79264  (#М224)

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4-
Классы: 10,11

У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Прислать комментарий     Решение


Задача 79245  (#М225)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Последовательности (прочее) ]
[ Куб ]
[ Линейные неравенства и системы неравенств ]
[ Наглядная геометрия в пространстве ]
[ Средние величины ]
Сложность: 4
Классы: 10

Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .