ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 97916  (#М1023)

Темы:   [ Покрытия ]
[ Площадь треугольника (через высоту и основание) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?

Прислать комментарий     Решение

Задача 97917  (#М1027)

Темы:   [ Произведения и факториалы ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9

Через n!! обозначается произведение  n(n – 2)(n – 4)...  до единицы (или до двойки): например,  8!! = 8·6·4·2;  9!! = 9·7·5·3·1.
Докажите, что  1985!! + 1986!!  делится на 1987.

Прислать комментарий     Решение

Задача 52489  (#М1031)

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Наибольшая или наименьшая длина ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой  AN = BN.  Докажите, что точки A, B, M, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 74569  (#М1034)

Темы:   [ Симметричная стратегия ]
[ Разные задачи на разрезания ]
Сложность: 4+
Классы: 7,8,9,10

Автор: Фомин С.В.

Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений), а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Прислать комментарий     Решение


Задача 79512  (#М1042)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Турниры и турнирные таблицы ]
Сложность: 4-
Классы: 7,8,9

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .