ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78628  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Перестановки и подстановки (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Дана таблица n×n клеток и такие натуральные числа k и  m > k,  что m и  n – k  взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа  a1, ..., ak, ak+1, ..., am, am+1, ..., an.  Тогда в следующей строчке записываются те же числа, но в таком порядке:  am+1, ..., an, ak+1, ..., am, a1, ..., ak.  В первую строчку записываются (по порядку) числа  1, 2, ..., n.  Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 78625  (#2)

Темы:   [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.
Прислать комментарий     Решение


Задача 78629  (#3)

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Можно ли расставить на окружности числа 1, 2...12 так, чтобы разность между двумя рядом стоящими числами была 3, 4 или 5?
Прислать комментарий     Решение


Задача 78630  (#4)

Темы:   [ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Метод координат в пространстве (прочее) ]
Сложность: 5-
Классы: 10,11

В восьми данных точках пространства установлено по прожектору, каждый из которых может осветить в пространстве октант (трёхгранный угол со взаимно-перпендикулярными сторонами). Доказать, что можно повернуть прожекторы так, чтобы они осветили все пространство.
Прислать комментарий     Решение


Задача 78631  (#5)

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Рассматриваются всевозможные n-значные числа, составленные из цифр 1, 2 и 3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так, что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются разные цифры. Доказать, что найдется n-значное число, в записи которого участвует лишь одна единица и к которому приписывается единица.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .