ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 88305  (#10.1)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Прислать комментарий     Решение

Задача 88306  (#10.2)

Темы:   [ Инварианты ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа 1, 2, 3, …, 20. Разрешается стереть любые два числа a и b и заменить их суммой ab + a + b. Какое число может получиться после 19 таких операций?
Прислать комментарий     Решение


Задача 88307  (#10.3)

Темы:   [ Инварианты ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
Прислать комментарий     Решение


Задача 88308  (#10.4)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 7,8,9

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Прислать комментарий     Решение

Задача 88309  (#10.5)

Темы:   [ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8

Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .