ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 97999

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Гусаров М.

Какую цифру надо поставить вместо знака "?" в числе 888...88?99...999 (восьмёрка и девятка написаны по 50 раз), чтобы оно делилось на 7?

Прислать комментарий     Решение

Задача 98009

Темы:   [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин Д.

Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел.

Прислать комментарий     Решение

Задача 98010

Темы:   [ Наглядная геометрия в пространстве ]
[ Обход графов ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Фомин С.В.

Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?

Прислать комментарий     Решение

Задача 98013

Темы:   [ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фомин С.В.

Даны 1000 линейных функций:  fk(x) = pkx + qk  (k = 1, 2, ..., 1000).  Нужно найти значение их композиции  f(x) = f1(f2(f3(...f1000(x)...)))  в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа  p1, p2, ..., p1000q1, q2, ..., q1000,  x0.

Прислать комментарий     Решение

Задача 98017

Темы:   [ Процессы и операции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин С.В.

Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .