ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 97997  (#1)

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3-
Классы: 7,8,9

Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

Прислать комментарий     Решение

Задача 108033  (#2)

Темы:   [ Неравенство треугольника ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

В треугольнике ABC проведена медиана AM.
Может ли радиус вписанной окружности треугольника ABM быть ровно в два раза больше радиуса вписанной окружности треугольника ACM?

Прислать комментарий     Решение

Задача 97999  (#3)

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Гусаров М.

Какую цифру надо поставить вместо знака "?" в числе 888...88?99...999 (восьмёрка и девятка написаны по 50 раз), чтобы оно делилось на 7?

Прислать комментарий     Решение

Задача 98000  (#4)

Темы:   [ Развертка помогает решить задачу ]
[ Обход графов ]
[ Наглядная геометрия в пространстве ]
[ Куб ]
Сложность: 3-
Классы: 8,9,10

Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .