ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98147  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

Прислать комментарий     Решение

Задача 98148  (#2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9

В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Прислать комментарий     Решение

Задача 98149  (#3)

Темы:   [ Тождественные преобразования ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что  P – QP и  P + Q  – квадраты некоторых многочленов (причём Q не получается умножением P на число)?

Прислать комментарий     Решение

Задача 98150  (#4)

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD  AB = BC = CD = 1,  AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.

Прислать комментарий     Решение

Задача 98151  (#5)

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Аналитический метод в геометрии ]
Сложность: 4+
Классы: 8,9

Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
Докажите, что все прямые MN проходят через одну точку (или параллельны).

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .