ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 105141  (#6)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.

Прислать комментарий     Решение

Задача 98572  (#7)

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .