ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 98620  (#1)

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что  R/r > a/h.

Прислать комментарий     Решение

Задача 98621  (#2)

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4
Классы: 10,11

Дан многочлен P(x) с действительными коэффициентами. Бесконечная последовательность различных натуральных чисел a1, a2, a3, ... такова, что
P(a1) = 0,  P(a2) = a1P(a3) = a2,  и т.д. Какую степень может иметь P(x)?

Прислать комментарий     Решение

Задача 98622  (#3)

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

Прислать комментарий     Решение

Задача 108121  (#4)

Темы:   [ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
[ Две касательные, проведенные из одной точки ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9,10,11

В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
EMK = 90°.

Прислать комментарий     Решение

Задача 105149  (#5)

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .