ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 89905  (#1.1)

Тема:   [ Лингвистика ]
Сложность: 2
Классы: 5,6,7

Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое?
Прислать комментарий     Решение


Задача 89906  (#1.2)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 89907  (#1.3)

Темы:   [ Математическая логика (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Эта старинная задача была известна еще в Древнем Риме.
Богатый сенатор, умирая, оставил жену в ожидании ребенка. После смерти сенатора выяснилось, что на свое имущество, равное 210 талантам, он составил следующее завещание: «В случае рождения сына отдать мальчику две трети состояния (т. е. 140 талантов), а остальную треть (т.е. 70 талантов) — матери; в случае же рождения дочери отдать девочке одну треть состояния (т. е. 70 талантов), а остальные две трети (т. е. 140 талантов) — матери».
У вдовы сенатора родились близнецы — мальчик и девочка. Такой возможности завещатель не предусмотрел. Как можно разделить имущество между тремя наследниками с наилучшим приближением к условию завещания?
Прислать комментарий     Решение


Задача 89908  (#1.4)

Тема:   [ Ребусы ]
Сложность: 2
Классы: 5,6

Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989.
Прислать комментарий     Решение


Задача 88101  (#1.5)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 5,6,7

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .