ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 110218  (#06.4.9.8)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 4+
Классы: 8,9,10

Автор: Козлов П.

Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.

Прислать комментарий     Решение

Задача 110207  (#06.4.10.1)

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Задача 110208  (#06.4.10.2)

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
Сложность: 4-
Классы: 8,9,10

Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.)  Докажите, что количество хороших раскрасок не меньше чем 68.

Прислать комментарий     Решение

Задача 110216  (#06.4.10.3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 110209  (#06.4.10.4)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

Даны  n > 1  приведённых квадратных трёхчленов  x² – a1x + b1,  ...,  x² – anx + bn,  причём все 2n чисел  a1, ..., an, b1, ..., bn  различны.
Может ли случиться, что каждое из чисел  a1, ..., an, b1, ..., bn  является корнем одного из этих трёхчленов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .