ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109745  (#01.5.9.1)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

Прислать комментарий     Решение

Задача 109746  (#01.5.9.2)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 8,9,10

Два многочлена  P(x) = x4 + ax³ + bx² + cx + d  и  Q(x) = x² + px + q  принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что  P(x0) < Q(x0).

Прислать комментарий     Решение

Задача 108140  (#01.5.9.3)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Удвоение медианы ]
Сложность: 4
Классы: 8,9

Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.

Прислать комментарий     Решение

Задача 109748  (#01.5.9.4)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
[ Выпуклые многоугольники ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Прислать комментарий     Решение


Задача 109749  (#01.5.9.5)

Темы:   [ Перебор случаев ]
[ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 7,8,9

Автор: Лифшиц Ю.

Юра выложил в ряд 2001 монету достоинством 1, 2 и 3 копейки. Оказалось, что между любыми двумя копеечными монетами лежит хотя бы одна монета, между любыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между любыми двумя трехкопеечными монетами лежат хотя бы три монеты. Сколько у Юры могло быть трехкопеечных монет?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .