ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115889  (#8.1)

Темы:   [ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9,10,11

В трапеции ABCD боковая сторона AB равна меньшему основанию BC, а диагональ AC равна основанию AD. Прямая, проходящая через вершину B параллельно AC, пересекает прямую DC в точке M. Докажите, что AM – биссектриса угла BAC.

Прислать комментарий     Решение

Задача 115890  (#8.2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Неопределено ]
Сложность: 3+
Классы: 8,9,10,11

Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса.

Прислать комментарий     Решение

Задача 115891  (#8.3)

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

Прислать комментарий     Решение

Задача 115892  (#8.4)

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Прямоугольный треугольник с углом в 30° ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Белухов Н.

В треугольнике ABC  ∠A = 57<°,  ∠B = 61°,  ∠C = 62°.  Какой из двух отрезков длиннее: биссектриса угла A или медиана, проведённая из вершины B?

Прислать комментарий     Решение

Задача 115893  (#8.5)

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что  ∠BAC = α.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .