ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 188]      



Задача 64367

Темы:   [ Текстовые задачи (прочее) ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 6,7

Винни-Пух, Пятачок, Кролик и ослик Иа-Иа опустошили бочонок меда. При этом Пятачок съел половину того, что съел Винни-Пух, Кролик – половину того, что не съел Винни-Пух, а ослику Иа-Иа досталась лишь десятая часть бочонка. Какая часть бочонка досталась Кролику?

Прислать комментарий     Решение

Задача 64368

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 6,7

Разрежьте фигуру с вырезанным квадратиком на две одинаковые части, из которых можно составить вторую фигуру. Части разрешается и поворачивать, и переворачивать.

Прислать комментарий     Решение

Задача 64369

Тема:   [ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 6,7

Давным-давно страной Тарнией правил царь Ятианр. Чтобы тарнийцы поменьше рассуждали, он придумал для них простой язык. Его алфавит состоял всего из шести букв: А, И, Н, Р, Т, Я, но порядок их отличался от принятого в русском языке. Словами этого языка были все последовательности, использующие каждую из этих букв по одному разу. Ятианр издал полный словарь нового языка. В соответствии с алфавитом первым словом словаря оказалось "Тарния". Какое слово следовало в словаре за именем Ятианр?

Прислать комментарий     Решение

Задача 64682

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

На русско-французской встрече не было представителей других стран. Суммарное количество денег у французов оказалось больше суммарного количества денег у россиян, и суммарное количество денег у женщин оказалось больше суммарного количества денег у мужчин.
Обязательно ли на встрече была француженка?

Прислать комментарий     Решение

Задача 64684

Темы:   [ Замощения костями домино и плитками ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8

На клетчатой доске размером 4×4 Петя закрашивает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки не пересекающимися и не вылезающими за границу квадрата уголками из трёх клеток. Какое наименьшее количество клеток должен закрасить Петя, чтобы Вася не выиграл?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .