ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 64918  (#16)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.

Прислать комментарий     Решение

Задача 64919  (#17)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

Прислать комментарий     Решение

Задача 64920  (#18)

Темы:   [ Построения одной линейкой ]
[ Против большей стороны лежит больший угол ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 9,10,11

На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка.

Прислать комментарий     Решение

Задача 64921  (#19)

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Формула Эйлера ]
[ Теоремы Чевы и Менелая ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 9,10,11

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.

Прислать комментарий     Решение

Задача 64922  (#20)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Теоремы Чевы и Менелая ]
[ Общая касательная к двум окружностям ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 10,11

В треугольнике ABC на стороне AB отметили точку D. Пусть ω1 и Ω1, ω2 и Ω2 – соответственно вписанные и вневписанные (касающиеся AB во внутренней точке) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω1 и ω2, Ω1 и Ω2 пересекаются на прямой AB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .