ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 111916  (#6)

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Прислать комментарий     Решение

Задача 64532  (#7)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Франк М.

В ячейку памяти компьютера записали число 6. Далее компьютер делает миллион шагов. На шаге номер n он увеличивает число в ячейке на наибольший общий делитель этого числа и n. Докажите, что на каждом шаге компьютер увеличивает число в ячейке либо на 1, либо на простое число.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .