ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 64687

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 6,7

Автор: Шноль Д.Э.

Вася положил некую сумму в рублях в банк под 20% годовых. Петя взял другую сумму в рублях, перевел её в доллары и положил в банк под 10% годовых. За год цена одного доллара в рублях увеличилась на 9,5%. Когда через год Петя перевел свой вклад в рубли, то оказалось, что за год Вася и Петя получили одинаковую прибыль. У кого первоначально была сумма больше – у Васи или у Пети?

Прислать комментарий     Решение

Задача 64688

Темы:   [ Наглядная геометрия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Автор: Фольклор

Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх.

Прислать комментарий     Решение

Задача 64689

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 6,7

Автор: Акопян Э.

Используя три различных знака арифметических действий и знак равенства, получите верное равенство из записи сегодняшней даты: 16032014.

Прислать комментарий     Решение

Задача 64690

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7

Автор: Кноп К.А.

В шеренге стоят 2014 человек, и одного из них зовут Артур. Каждый из стоящих в шеренге либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Каждый, кроме Артура, сказал: "Между мной и Артуром стоят ровно два лжеца". Сколько лжецов в этой шеренге, если известно, что Артур – рыцарь?

Прислать комментарий     Решение

Задача 64693

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Впишите в пять кружков натуральные числа так, чтобы выполнялись два условия:
  - если два кружка соединены линией, то стоящие в них числа должны отличаться ровно в два или ровно в четыре раза;
  - если два кружка не соединены линией, то отношение стоящих в них чисел не должно быть равно ни 2, ни 4.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .