ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 65091

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
PC = 2PN.  Докажите, что  АР = ВС.

Прислать комментарий     Решение

Задача 65093

Темы:   [ Теория графов (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

За круглым столом сидят 40 человек. Может ли случиться, что у каждых двух из них, между которыми сидит чётное число человек, есть за столом общий знакомый, а у каждых двух, между которыми сидит нечётное число человек, общего знакомого нет?

Прислать комментарий     Решение

Задача 65094

Темы:   [ Задачи на смеси и концентрации ]
[ Процессы и операции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Автор: Шевяков В.

Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?

Прислать комментарий     Решение

Задача 65095

Темы:   [ Четырехугольник (неравенства) ]
[ Признаки и свойства параллелограмма ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD, в котором  AB = CD,  выбрана точка P таким образом, что сумма углов PBA и PCD равна 180°.
Докажите, что  PB + PC < AD.

Прислать комментарий     Решение

Задача 65098

Темы:   [ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

По окружности записали красным пять несократимых дробей с нечётными знаменателями, большими 1010. Между каждыми двумя соседними красными дробями вписали синим несократимую запись их суммы. Могло ли случиться, что у синих дробей все знаменатели меньше 100?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .