ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 65111  (#9.1)

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться?

Прислать комментарий     Решение

Задача 65119  (#10.1)

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

Прислать комментарий     Решение

Задача 65119  (#11.1)

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Целые числа a, x1, x2, ..., x13 таковы, что  a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13).  Докажите, что  ax1x2...x13 = 0.

Прислать комментарий     Решение

Задача 65250  (#9.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10,11

Числа a и b таковы, что каждый из двух квадратных трёхчленов  x² + ax + b  и  x² + bx + a  имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней.

Прислать комментарий     Решение

Задача 65242  (#10.1)

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .