ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 65242  (#10.1)

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.

Прислать комментарий     Решение

Задача 65243  (#10.2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Дан параллелограмм ABCD, в котором  AB < AC < BC.  Точки E и F выбраны на описанной окружности ω треугольника ABC так, что касательные к ω в этих точках проходят через точку D; при этом отрезки AD и CE пересекаются. Оказалось, что  ∠ABF = ∠DCE.  Найдите угол ABC.

Прислать комментарий     Решение

Задача 65244  (#10.3)

Темы:   [ Ориентированные графы ]
[ Отношение порядка ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

На соревнованиях по фигурному велосипедированию было 100 судей. Каждый судья упорядочил всех участников (от лучшего по его мнению – к худшему). Оказалось, что ни для каких трёх участников A, B, C не нашлось трёх судей, один из которых считает, что A – лучший из трёх, а B – худший, другой – что B лучший, а C худший, а третий – что C лучший, а A худший. Докажите, что можно составить общий рейтинг участников так, чтобы для каждых двух участников A и B тот, кто выше в рейтинге, был бы лучше другого по мнению хотя бы половины судей.

Прислать комментарий     Решение

Задача 65245  (#10.4)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
Сложность: 5
Классы: 9,10,11

  Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что  an = a  и  ai+1 = ai – S(ai)  при всех  i = 0, 1, ..., n – 1.  Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?

Прислать комментарий     Решение

Задача 65246  (#10.5)

Темы:   [ Замощения костями домино и плитками ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9,10,11

Известно, что клетчатый квадрат можно разрезать на n одинаковых фигурок из k клеток.
Докажите, что его можно разрезать и на k одинаковых фигурок из n клеток.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .