ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65385  (#1)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

У каждого целого числа от  n + 1  до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².

Прислать комментарий     Решение

Задача 65387  (#2)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?

Прислать комментарий     Решение

Задача 65388  (#3)

Темы:   [ Деление с остатком ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10,11

У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.

Прислать комментарий     Решение

Задача 108101  (#4)

Темы:   [ Площадь четырехугольника ]
[ Неравенство треугольника (прочее) ]
[ Углы между биссектрисами ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 9,10,11

На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть A, B, C и D – вершины их прямых углов, а O1, O2, O3 и O4 – центры вписанных окружностей этих треугольников. Докажите, что
  а) площадь четырёхугольника ABCD не превосходит 2;
  б) площадь четырёхугольника O1O2O3O4 не превосходит 1.

Прислать комментарий     Решение

Задача 65390  (#5)

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Неравенства с трехгранными углами ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 10,11

Бумажный тетраэдр разрезали по трём ребрам, не принадлежащим одной грани. Могло ли случиться, что полученную развёртку нельзя расположить на плоскости без самопересечений (в один слой).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .