ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 65707  (#11.4)

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?

Прислать комментарий     Решение

Задача 65744  (#9.4)

Темы:   [ Замощения костями домино и плитками ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)

Прислать комментарий     Решение

Задача 65752  (#10.4)

Темы:   [ Выпуклые многоугольники ]
[ Доказательство от противного ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 10,11

Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Прислать комментарий     Решение

Задача 65760  (#11.4)

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 10,11

В координатном пространстве провели все плоскости с уравнениями  x ± y ± z = n  (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (x0, y0, z0)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка  (kx0, ky0, kz0)  лежит строго внутри некоторого октаэдра разбиения.

Прислать комментарий     Решение

Задача 65697  (#9.5)

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .