ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 65749  (#11.1)

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Задача 65742  (#9.2)

Темы:   [ Окружность, вписанная в угол ]
[ Четыре точки, лежащие на одной окружности ]
[ Две пары подобных треугольников ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10

Окружность ω касается сторон угла BAC в точках B и C. Прямая l пересекает отрезки AB и AC в точках K и L соответственно. Окружность ω пересекает l в точках P и Q. Точки S и T выбраны на отрезке BC так, что  KS || AC  и  LT || AB.  Докажите, что точки P, Q, S и T лежат на одной окружности.

Прислать комментарий     Решение

Задача 65694  (#9.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Обухов Б.

Дан равнобедренный треугольник ABC,  AB = BC.  В описанной окружности Ω треугольника ABC проведён диаметр CC'. Прямая, проходящая через точку C' параллельно BC, пересекает отрезки AB и AC в точках M и P соответственно. Докажите, что M – середина отрезка C'P.

Прислать комментарий     Решение

Задача 65700  (#10.2)

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Прислать комментарий     Решение

Задача 65705  (#11.2)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Автор: Храбров А.

Положительные числа x, y и z удовлетворяют условию  xyz ≥ xy + yz + zx.  Докажите неравенство  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .