ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65746  (#9.6)

Темы:   [ Разрезания на параллелограммы ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 8,9,10

Квадрат разбит на  n² ≥ 4  прямоугольников  2(n – 1)  прямыми, из которых  n – 1  параллельны одной стороне квадрата, а остальные  n – 1  – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).

Прислать комментарий     Решение

Задача 65747  (#9.7)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9,10

Окружность ω вписана в треугольник ABC, в котором  AB < AC.  Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма  XY + XZ  не зависит от выбора точки X.

Прислать комментарий     Решение

Задача 65748  (#9.8)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Автор: Храбров А.

Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство   1/a² + 1/b² + 1/c² + 1/d²1/a²b²c²d².

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .